Erwartungswert

In einer Urne sind 3 graue Kugeln, 3 weiße Kugeln und 2 schwarze Kugeln. Du ziehst 3 Kugeln ohne Zurücklegen.

Die Zufallsvariable X gibt an, wie viele der 3 gezogenen Kugeln weiß sind.

1) Berechne die Wahrscheinlichkeiten P(X = 0), P(X = 1), P(X = 2) und P(X = 3). Trage die Wahrscheinlichkeiten als Brüche in die Tabelle rechts ein.

x_i	0	1	2	3
$P(X=x_i)$				

2) Berechne den Erwartungswert von X, und interpretiere seinen Wert.

Gegenwahrscheinlichkeit

Du würfelst n Mal mit einem fairen 6-seitigen Würfel mit den Augenzahlen von 1 bis 6. Die Zufallsvariable X_n gibt die Anzahl der gewürfelten Sechser an.

1) Berechne die Wahrscheinlichkeit, dass sich unter 10 Würfen kein Sechser befindet.

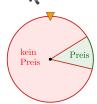
$$P(X_{10} = 0) =$$

2) Berechne die Wahrscheinlichkeit, dass sich unter 10 Würfen mindestens ein Sechser befindet.

$$P(X_{10} \ge 1) =$$

3) Stelle mithilfe von n eine Formel für die Wahrscheinlichkeit auf, dass sich unter n Würfen mindestens ein Sechser befindet.

$$P(X_n \ge 1) =$$


4) Wie oft muss man würfeln, damit sich mit mindestens 99 %-iger Wahrscheinlichkeit mindestens ein Sechser unter den Würfen befindet?

Glücksrad

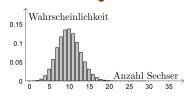
Bei einem Glücksrad gewinnt man bei jeder Drehung unabhängig voneinander mit der Wahrscheinlichkeit p einen Preis.

1) Du drehst 42 Mal am Glücksrad. Beschreibe jeweils in Worten ein Ereignis, das in diesem Sachzusammenhang die angegebene Wahrscheinlichkeit hat.

Ereignis	Wahrscheinlichkeit
	p^{42}
	(1)42
	$(1-p)^{42}$
	$1 - p^{42}$
	$1 - (1 - p)^{42}$

2) Bei 42 Drehungen gewinnt man mit der Wahrscheinlichkeit $99,9\,\%$ mindestens einmal einen Preis. Berechne den zugehörigen Zentriwinkel des Preis-Sektors.

Minimum



Ein Zufallsgenerator erzeugt 5 natürliche Zahlen von 1 bis 100 nach dem Zufallsprinzip. Berechne die Wahrscheinlichkeit, dass die kleinste dieser 5 Zufallszahlen höchstens 42 ist.

Binomialverteilung

Du würfelst immer wieder 60 Mal mit einem fairen 6-seitigen Würfel. Bei häufiger Durchführung sind durchschnittlich 10 Sechser zu erwarten. Wie wahrscheinlich ist es, bei einem Versuch genau 10 Sechser zu würfeln? Mehr dazu findest du am Arbeitsblatt – Binomialverteilung.

