Name:	Matrikelnummer:	Gruppe:
		- T I

– Arbeitszeit: 45 Minuten

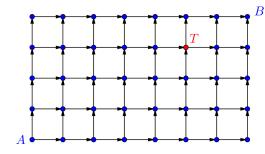
- Erreichte Punkte: von 10
- Prüfungsstoff: 9.-10. Schulstufe vgl. "So viel Rechnen muss sein"
- Bei jeder Aufgabe sind 2 Punkte zu erreichen.
 - (1) Gegeben ist die Polynomfunktion f mit $f(x) = x \cdot (2 \cdot x + 14) \cdot (x^2 + 8 \cdot x + 15)$.
 - a) Die Polynomfunktion f hat den Grad .
 - b) Ermittle die Nullstellen von f über der Grundmenge \mathbb{R} .
 - ② Berechne alle $x \in \mathbb{R}$ so, dass die Vektoren $\binom{x+4}{x-2}$ und $\binom{3}{-2-x}$ normal aufeinander stehen.
 - (3)
 - a) Es gibt genau einen Winkel α , der die drei Bedingungen
 - i) $\sin(\alpha) = \sin(42^\circ)$ ii) $0^\circ \le \alpha < 360^\circ$ und iii) $\alpha \ne 42^\circ$

erfüllt. Fertige eine Skizze am Einheitskreis an, und berechne diesen Winkel α .

b) Ist der Winkel β durch die zwei Bedingungen

i)
$$\cos(\beta) = \sin(42^{\circ})$$
 und ii) $0^{\circ} \le \beta < 360^{\circ}$

eindeutig festgelegt?


Falls ja, warum? Falls nein, welche Winkel β erfüllen beide Bedingungen?

(4) Vereinfache den Term so weit wie möglich.

a)
$$\frac{(x \cdot y)^2 \cdot (x^2 - y^2) \cdot \frac{1}{x} + x^2 \cdot y \cdot (x + y)^2}{x \cdot y \cdot (x + y)}$$

Hinweis: Alle Faktoren im Nenner können gekürzt werden.

- **b)** $\lg(10^a \cdot b) \lg(b)$
- (5) Willi steht im Punkt A und möchte entlang der Pfeile zum Punkt B kommen.

Jeder Pfeil zeigt entweder nach rechts oder nach oben.

Wie viele mögliche Wege von A nach B hat Willi, wenn der eingezeichnete Punkt T am Weg liegen muss?