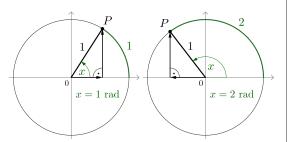
Funktionsgraph der Sinusfunktion

Bei den Winkel funktionen auf diesem Arbeitsblatt messen wir alle Winkel im Bogenmaß. Rechts sind die beiden Winkel x = 1 rad bzw. x = 2 rad am Einheitskreis dargestellt.

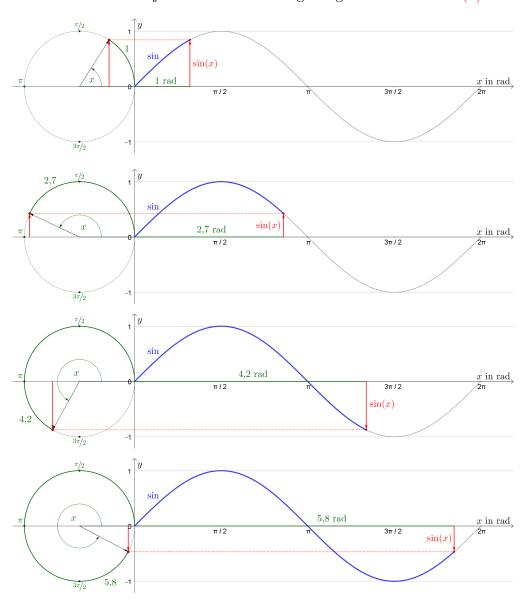
Da der Radius die Länge 1 hat, haben die beiden dargestellten Winkelbögen am Kreis die Länge 1 bzw. 2.

Jedem Winkel $x \in [0 \text{ rad}, 2 \cdot \pi \text{ rad}[$ entspricht genau ein Punkt P am Einheitskreis. Für seine Koordinaten gilt:

$$P = (\cos(x) \mid \sin(x))$$



Die **Sinusfunktion** ordnet jedem Winkel x die zugehörige 2. Koordinate $\sin(x)$ am Einheitskreis zu:



Im Intervall $[0 \operatorname{rad}, 2 \cdot \pi \operatorname{rad}]$ hat die Sinusfunktion . . .

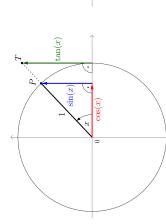
... die Nullstellen bei den Winkeln x = rad und x = rad.

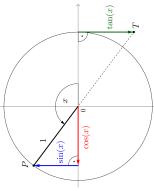
 \dots den Hochpunkt (rad |) und den Tiefpunkt (rad |).

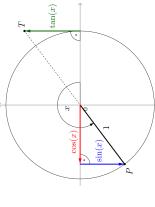
Am steilsten bergab geht die Sinusfunktion im Intervall $[0 \text{ rad}, 2 \cdot \pi \text{ rad}[$ an der Stelle x = [rad. Diese Stelle ist eine sogenannte Wendestelle der Sinusfunktion.

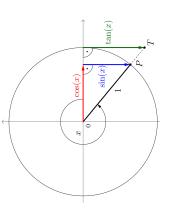
Eigenschaften der Winkelfunktionen (

In den folgenden Bildern sind die Winkelfunktionen Sinus, Cosinus und Tangens in den 4 Quadranten am Einheitskreis dargestellt:





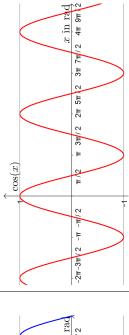




Die Winkelfunktionen Sinus, Cosinus und Tangens haben daher die folgenden Eigenschaften:

Sinusfunktion: $\sin(x)$





Definitionsmenge: $D = \mathbb{R}$

(Kleinstmögliche) Wertemenge: W = [-1;1]

(Kleinstmögliche) Periodendauer: $T = 2 \cdot \pi \operatorname{rad}$

(Kleinstmögliche) Periodendauer: $T = 2 \cdot \pi \operatorname{rad}$

(Kleinstmögliche) Wertemenge: W = [-1; 1]

Definitions menge: $D = \mathbb{R}$

Nullstellen: $\frac{\pi}{2} + k \cdot \pi$ mit $k \in \mathbb{Z}$

 $\cos(-x) = \cos(x)$ sin ist eine ungerade Funktion.

Symmetrie zur vertikalen Achse:

Symmetrie zum Koordinatenursprung $(0 \mid 0)$:

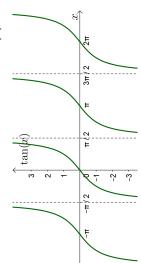
 $\sin(-x) = -\sin(x)$

Nullstellen: $k \cdot \pi$ mit $k \in \mathbb{Z}$

cos ist eine gerade Funktion.

Tangensfunktion: tan(x) =

Cosinusfunktion: $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$



Definitions menge: $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k \cdot \pi \mid k \in \mathbb{Z}\}$

(Kleinstmögliche) Wertemenge: W =

(Kleinstmögliche) Periodendauer: $T = \pi \operatorname{rad}$

Nullstellen: $k \cdot \pi$ mit $k \in \mathbb{Z}$

Symmetrie zum Koordinatenursprung $(0 \mid 0)$:

tan ist eine ungerade Funktion. $\tan(-x) = -\tan(x)$

 $k \in \mathcal{C}$ Polstellen: $\frac{\pi}{2} + k \cdot \pi$ mit

N

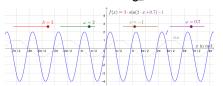
Allgemeine Sinusfunktion

Jede Funktion f mit

$$f(x) = A \cdot \sin(\omega \cdot x + \varphi) + c$$

 $A \dots$ Amplitude

 ω ... Kreisfrequenz φ ... Nullphasenwinkel



heißt allgemeine Sinusfunktion.

Die Graphen von $x \mapsto \sin(x)$ und $x \mapsto 3 \cdot \sin(2 \cdot x + 0.7) - 1$ unterscheiden sich durch ...

- 1) Skalierung in vertikaler Richtung (A),
- 2) Skalierung in horizontaler Richtung (ω),
- 3) Verschiebung in vertikaler Richtung (c) und
- 4) Verschiebung in horizontaler Richtung (φ bzw. ω).

Diese Zusammenhänge zwischen den Graphen von

$$x \mapsto f(x)$$
 und $x \mapsto a \cdot f(b \cdot x + c) + d$

gelten nicht nur für die Sinusfunktion, sondern für alle reellen Funktionen f.

Amplitude A

Die Funktionswerte von $g(x) = \sin(x)$ sind genau im Intervall [-1;1] enthalten.

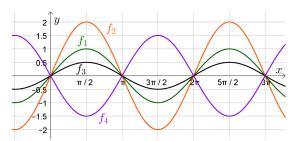
Also sind die Funktionswerte von $f(x) = A \cdot \sin(x)$ genau im Intervall enthalten.

Eine Amplitude A > 1 bewirkt eine Streckung des Funktionsgraphen von g in y-Richtung.

Eine Amplitude 0 < A < 1 bewirkt eine Stauchung des Funktionsgraphen von g in y-Richtung.

Die Graphen von $x \mapsto 3 \cdot \sin(x)$ und $x \mapsto -3 \cdot \sin(x)$ sind *Spiegelungen* voneinander an der x-Achse.

Die Graphen von Funktionen f_i mit $f_i(x) = A \cdot \sin(x)$ sind unten dargestellt.



$$f_1(x) =$$
, weil $A =$.

$$f_2(x) = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$
, weil $A = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$

$$f_3(x) =$$
 , weil $A =$

$$f_4(x) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$
, weil $A = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$

Kreisfrequenz ω

Die Funktion $g(x) = \sin(x)$ durchläuft eine vollständige Periode von x = 0 rad bis $x = 2 \cdot \pi$ rad.

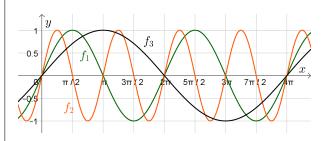
Also durchläuft $f(x) = \sin(\omega \cdot x)$ eine vollständige Periode von x = 0 rad bis $x = \frac{1}{2}$ rad.

Für die **Periodendauer** T und die **Kreisfrequenz** ω gilt also: $T=\frac{2\cdot\pi}{\omega}$ bzw. $\omega=\frac{2\cdot\pi}{T}$

Eine Kreisfrequzenz $\omega > 1$ bewirkt eine Stauchung von g in x-Richtung. Je größer ω , desto kleiner T.

Eine Kreisfrequzenz $0 < \omega < 1$ bewirkt eine Streckung von g in x-Richtung. Je kleiner ω , desto größer T.

Die Graphen von Funktionen f_i mit $f_i(x) = \sin(\omega \cdot x)$ sind unten dargestellt.



$$f_1(x) = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$
, weil $\omega = \frac{2 \cdot \pi}{} = \begin{bmatrix} & & \\ & & & \end{bmatrix}$.

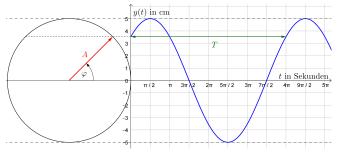
$$f_2(x) =$$
, weil $\omega = \frac{2 \cdot \pi}{1 - 1} =$

$$f_3(x) =$$
, weil $\omega = \frac{2 \cdot \pi}{}$

In einem Zeigerdiagramm rotiert ein Zeiger gegen den Uhrzeigersinn.

Zum Zeitpunkt t=0 ist der Zeiger in der unten dargestellten Position.

Zum Zeitpunkt t ist y(t) die y-Koordinate der Zeigerspitze.



Der Graph der Funktion y ist links dargestellt. Dabei gilt:

$$y(t) = A \cdot \sin(\omega \cdot t + \varphi)$$

 $t \dots$ Zeit in Sekunden

 $y(t) \dots y$ -Koordinate der Zeigerspitze in cm

- 1) Die Länge des Zeigers ist die Amplitude A = cm .
- 2) Ermittle die Kreisfrequenz ω dieser allgemeinen Sinusfunktion.

$$\omega = \frac{2 \cdot \pi}{T} = \frac{2 \cdot \pi}{1 - 1} = \frac{1}{1 - 1} \operatorname{rad/s}$$

Die Kreisfrequenz $\omega = \frac{\text{Zurückgelegter Winkel}}{\text{Benötigte Zeit}}$ heißt deshalb auch **Winkelgeschwindigkeit**.

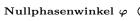
Zum Zeitpunkt t=0 gilt: $y(0)=A\cdot\sin(\omega\cdot 0+\varphi)=A\cdot\sin(\varphi)$

Der Winkel φ ist also der Winkel zum Zeitpunkt t=0 und heißt deshalb **Nullphasenwinkel**.

Für den oben eingezeichneten Nullphasenwinkel gilt: $\varphi = \frac{\pi}{4}$ rad

Zum Zeitpunkt t ist $\omega \cdot t + \varphi$ der Winkel des Zeigers.

3) Rechne nach, dass der Zeiger zum Zeitpunkt $t = \frac{7 \cdot \pi}{2}$ waagrecht nach rechts zeigt.

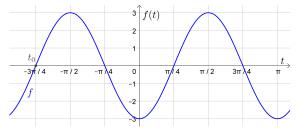


Der Graph einer allgemeinen Sinusfunktion f mit $f(t) = A \cdot \sin(\omega \cdot t + \varphi)$ ist dargestellt.

1) Ermittle die Parameterwerte A>0 und $\omega>0$.

$$A =$$

$$\omega = \frac{2 \cdot \pi}{T} = \frac{2 \cdot \pi}{T} = \frac{1}{T}$$



Ausgehend von t=0 drehen wir die Zeit so weit zurück, bis der Zeiger im Zeigerdiagramm waagrecht nach rechts zeigt. Dieser Zeitpunkt $t_0=-\frac{3\cdot\pi}{4}$ ist oben eingezeichnet.

Zum Zeitpunkt t_0 gilt $\,\omega\cdot t_0 + \varphi = 0\,$ bzw. $\,\boldsymbol{\varphi} = -\boldsymbol{\omega}\cdot \boldsymbol{t_0}\,.$

2) Ermittle damit den Nullphasenwinkel $\varphi \in [0 \text{ rad}; 2 \cdot \pi \text{ rad}]$ und eine Funktionsgleichung von f.

Jede Änderung von φ um $2 \cdot \pi$ hat keine Auswirkung auf den Funktionsgraphen, weil $\sin(\mathfrak{O} + 2 \cdot \pi) = \sin(\mathfrak{O})$ gilt.

Zur Berechnung von $\varphi = -\omega \cdot t_0$ kannst du für t_0 deshalb jede Stelle wählen, bei der der Zeiger waagrecht nach rechts zeigt.

Bei dieser speziellen Funktion f kannst du den Nullphasenwinkel φ auch direkt an der Stelle t=0 ablesen. Warum?

Vertikale Verschiebung c

Die Funktionswerte von $g(x) = A \cdot \sin(\omega \cdot x + \varphi)$ sind genau im Intervall [-A; A] enthalten.

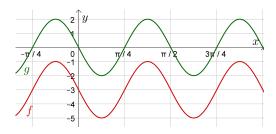
Also sind die Werte von $f(x) = A \cdot \sin(\omega \cdot x + \varphi) + c$ genau im Intervall

enthalten.

c>0 bewirkt eine Verschiebung des Funktionsgraphen von g um c Einheiten nach oben.

c < 0 bewirkt eine Verschiebung des Funktionsgraphen von g um |c| Einheiten nach unten.

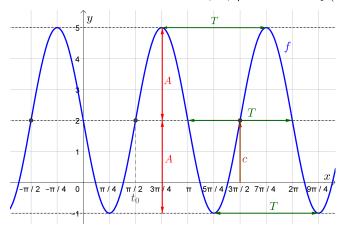
1) Ermittle eine Gleichung der dargestellten Funktion g.



2) Für die dargestellte Funktion f gilt also: f(x) =

Funktionsgraph \sim Funktionsgleichung

Wir ermitteln die Parameter A, ω, φ und c von $f(x) = A \cdot \sin(\omega \cdot x + \varphi) + c$ aus dem Graphen:



Die horizontalen Geraden durch die Hochpunkte und durch die Tiefpunkte sind links eingezeichnet.

Bei der dargestellten Funktion f sind das die Geraden y = 5 und y = -1.

In der Mitte dazwischen verläuft die horizontale Gerade $y = \frac{5+(-1)}{2} = 2$.

Falls c = 0 gilt, dann ist die x-Achse diese mittlere Gerade.

- 1) Bei der dargestellten Funktion f gilt also: c =
- 2) Die Amplitude A ist der Abstand zwischen der mittleren und den beiden äußeren Geraden. Bei der dargestellten Funktion f gilt also: $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- 3) Die Periodendauer T ist (zum Beispiel) der Abstand zwischen benachbarten Hochpunkten.

$$T = igcap \omega = rac{\mathbf{2} \cdot \mathbf{\pi}}{T} = igcap$$

4) Lies eine Stelle t_0 ab, an der der Graph die mittlere Gerade von unten nach oben schneidet. Der Zeiger im entsprechenden Zeigerdiagramm zeigt an einer solchen Stelle also waagrecht nach rechts.

$$t_0 = igwidge arphi = -\omega \cdot t_0 = igwedge$$

Eine Gleichung der dargestellten Funktion f ist also f(x) =

Extrempunkte

Gegeben ist die Funktion f mit $f(x) = 4.2 \cdot \sin(5 \cdot x - 1) + 2$.

Berechne einen Hochpunkt und einen Tiefpunkt von f.

${\bf Frequenz}\ /\ {\bf Kreisfrequenz}$

Für die Funktion g gilt: $g(t) = 3.5 \cdot \sin(3 \cdot \pi \cdot t)$ (t in Sekunden, y(t) in cm)

Für die Kreisfrequenz ω dieser Sinusschwingung gilt also: $\omega = -$ rad/s

Einer vollständigen Kreisumdrehung entspricht der Winkel rad.

In diesem Zeigerdiagramm schafft der Zeiger also Umdrehungen pro Sekunde.

Das ist die sogenannte **Frequenz** f dieser Sinusschwingung: $f = \frac{\text{Umdr.}}{s}$

Für die **Periodendauer** T dieser Sinusschwingung gilt: $T = \frac{s}{\text{Umdr.}}$

Allgemein gilt: $\omega = 2 \cdot \pi \cdot f$ bzw. $f = \frac{1}{T}$

Verschiedene Funktionsgleichungen - Gleiche Funktion

Erinnere dich, dass $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x)$ und $\cos(x) = \sin(x + \frac{\pi}{2})$ für alle $x \in \mathbb{R}$ gilt.

Trage jeweils Zahlen in die großen Kästchen und + bzw. - in die kleinen Kästchen so ein, dass die Gleichung für alle $x \in \mathbb{R}$ stimmt.

a)
$$a(x) = 2 \cdot \sin(-4 \cdot x) + 3 = -2 \cdot \sin(-4 \cdot x)$$

b)
$$b(x) = -3 \cdot \sin(2 \cdot x - 1) = 3 \cdot \sin(3 \cdot x)$$

c)
$$c(x) = 5 \cdot \cos(-2 \cdot x + 3) = \cos(2 \cdot x)$$

d)
$$d(x) = 4 \cdot \cos\left(3 \cdot x + \frac{\pi}{4}\right) = \left[-\sin\left(3 \cdot x\right) \right]$$

e)
$$e(x) = \sin(x + \frac{\pi}{4}) + \pi = \cos(x)$$

