Zweiseitiger Zufallsstreubereich für einen Einzelwert

Die Körpergröße von 42-jährigen Männern ist normalverteilt mit Erwartungswert $\mu=177.8\,\mathrm{cm}$ und Standardabweichung $\sigma=6.1\,\mathrm{cm}$.

Berechne den **zweiseitigen 72 %-Zufallsstreubereich** für die Körpergröße eines 42-jährigen Manns.

Das heißt: Ein 42-jähriger Mann wird nach dem Zufallsprinzip ausgewählt.

In welchem um μ symmetrischen Intervall ist seine Körpergröße mit der Wahrscheinlichkeit 72 %?

Berechnung ohne Formel

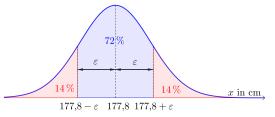
Die Dichtefunktion der normalverteilten Zufallsvariable mit $\mu=177.8$ und $\sigma=6.1$ ist dargestellt.

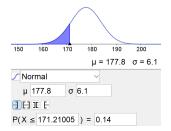
Gesucht ist jenes um μ symmetrische Intervall, für das gilt:

$$P(177.8 - \varepsilon \le X \le 177.8 + \varepsilon) = 0.72$$

Beschrifte rechts die blaue Fläche und die beiden roten Flächen jeweils mit ihrer zugehörigen Wahrscheinlichkeit.

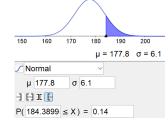
Ermittle die beiden Intervallgrenzen mit Technologie
einsatz:





$$P(X \le 171,2...) = 14\%$$

$$P(X \ge 184,3...) = 14\%$$



72 %-Zufallsstreubereich für die Körpergröße eines 42-jährigen Manns: [171,2... cm; 184,3... cm]

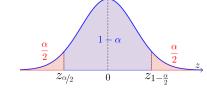
Zweiseitiger Zufallsstreubereich für einen Einzelwert

Die Zufallsvariable Z ist standardnormalverteilt.

Die Irrtumswahrscheinlichkeit α ist eine Zahl mit $0 < \alpha < 1$.

Das **p-Quantil** ist jene Zahl z_p mit $P(Z \le z_p) = p$.

Rechts sind das $\frac{\alpha}{2}$ -Quantil und das $(1-\frac{\alpha}{2})$ -Quantil dargestellt.



Die Zufallsvariable X ist normalverteilt mit Erwartungswert μ und Standardabweichung $\sigma > 0$.

Dann gilt für den zweiseitigen $(1 - \alpha)$ -Zufallsstreubereich für einen Einzelwert von X:

$$\left[\mu-z_{1-rac{lpha}{2}}\cdot\sigma\;;\;\mu+z_{1-rac{lpha}{2}}\cdot\sigma
ight]$$

Diese Formel folgt aus der Standardisierung $Z=\frac{X-\mu}{\sigma}$ bzw. $X=\mu+Z\cdot\sigma$. Die Stelle $z_{1-\frac{\alpha}{2}}$ von Z entspricht also der Stelle $\mu+z_{1-\frac{\alpha}{2}}\cdot\sigma$ von X. Symmetrisch zu μ liegt die linke Grenze $\mu-z_{1-\frac{\alpha}{2}}\cdot\sigma$.

Berechnung mit Formel

MmF

Beim zweiseitigen 72 %-Zufallsstreubereich gilt $1-\alpha=0.72$

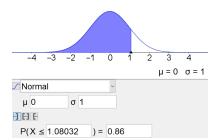
und damit $\alpha = 0.28$ bzw. $1 - \frac{\alpha}{2} = 0.86$.

Das 86 %-Quantil der Standardnormalverteilung ist jene Zahl $z_{0,86}$, die $P(Z \le z_{0,86}) = 0.86$ erfüllt.

Für dieses Quantil gilt: $z_{0.86} = 1,0803...$

Für den zweiseitigen 72 %-Zufallsstreubereich von X gilt also:

$$[\mu - z_{0,86} \cdot \sigma ; \mu + z_{0,86} \cdot \sigma] = [171,2...\text{cm}; 184,3...\text{cm}]$$



Zweiseitiger Zufallsstreubereich für den Stichprobenmittelwert

Die Körpergröße von 42-jährigen Männern ist normalverteilt mit $\mu=177.8\,\mathrm{cm}$ und $\sigma=\overline{6.1}\,\mathrm{cm}$.

Eine Stichprobe besteht aus n=25 nach dem Zufallsprinzip ausgewählten 42-jährigen Männern.

Berechne den zweiseitigen 72 %-Zufallsstreubereich für den Stichprobenmittelwert \bar{X} .

Das heißt: In welchem um μ symmetrischen Intervall ist \bar{X} mit der Wahrscheinlichkeit 72 %?

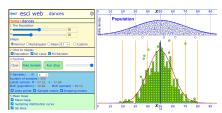
Verteilung des Stichprobenmittelwerts

Die Zufallsvariablen $X_1, X_2, ..., X_n$ sind unabhängig und normalverteilt mit Erwartungswert μ und Standardabweichung $\sigma > 0$. Dann ist auch das **arithmetische Mittel** \bar{X} mit

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

eine normalverteilte Zufallsvariable mit $\mu_{ar{X}}=\mu$ und $\sigma_{ar{X}}=rac{\sigma}{\sqrt{n}}$.

Je größer die Stichprobengröße n ist, desto kleiner ist also die Standardabweichung des Stichprobenmittelwerts.



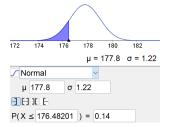
Quelle: esci.thenewstatistics.com

Berechnung ohne Formel

Der Stichprobenmittelwert \bar{X} von n=25 Körpergrößen ist also normalverteilt mit

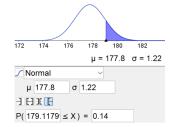
Erwartungswert $\mu_{\bar{X}} = 177.8 \, \mathrm{cm}$ und Standardabweichung $\sigma_{\bar{X}} = \frac{6.1}{\sqrt{25}} = 1.22 \, \mathrm{cm}$.

Ermittle die beiden Intervallgrenzen mit Technologieeinsatz:



$$P(\bar{X} \le 176,4...) = 14\%$$

$$P(\bar{X} > 179.1...) = 14\%$$



72 %-Zufallsstreubereich für den Stichprobenmittelwert \bar{X} : [176,4... cm; 179,1... cm]

Zweiseitiger Zufallsstreubereich für den Stichprobenmittelwert

Die Zufallsvariable X ist normalverteilt mit Erwartungswert μ und Standardabweichung $\overline{\sigma} > 0$.

Dann gilt für den zweiseitigen $(1 - \alpha)$ -Zufallsstreubereich für den Stichprobenmittelwert \bar{X} :

$$\left[\mu-z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\;;\;\mu+z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt{n}}\right]\quad \text{ Das ist die gleiche Formel wie auf S.1 nur mit Standardabweichung } \tfrac{\sigma}{\sqrt{n}}.$$

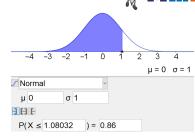
Dabei ist $z_{1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der Standardnormalverteilung mit $0<\alpha<1$.

Berechnung mit Formel

Wie zuvor ermitteln wir das 86 %-Quantil: $z_{0.86} = 1,0803...$

Für den zweiseitigen 72 %-Zufallsstreubereich von \bar{X} gilt also:

$$\[\mu - z_{0,86} \cdot \frac{\sigma}{\sqrt{n}} ; \mu + z_{0,86} \cdot \frac{\sigma}{\sqrt{n}}\] = [176,4... \text{ cm}; 179,1... \text{ cm}]\]$$



Zweiseitiges Konfidenzintervall für μ bei bekanntem σ

Die Körpergröße von 42-jährigen Männern ist normalverteilt mit unbekanntem Erwartungswert μ und bekannter Standardabweichung $\sigma = 6.1 \, \mathrm{cm}$. Wir sollen den Erwartungswert μ schätzen.

Dazu wählen wir 42-jährige Männer nach dem Zufallsprinzip aus und messen ihre Körpergrößen (in cm):

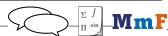
187,1	169,5	179,4	164,9	168,9	182,2	178,4	180,7	184,3	183,4

Auf Basis dieser Stichprobe ist die beste Schätzung für μ das arithmetische Mittel $\bar{x} = 177,88$ cm.

Berechne das zweiseitige 95 %-Konfidenzintervall für den Erwartungswert μ .

Das heißt: Welches symmetrisch um \bar{x} liegende Intervall enthält μ mit der Wahrscheinlichkeit 95 %?

Zweiseitiges Konfidenzintervall für μ bei bekanntem d



Die Zufallsvariable X ist normalverteilt mit unbekanntem Erwartungswert μ und bekannter Standardabweichung $\sigma>0$.

Eine Stichprobe der Größe n hat den Stichprobenmittelwert \bar{x} .

Dann gilt für das zweiseitige $(1 - \alpha)$ -Konfidenzintervall für μ :

$$\left[ar{x}-z_{1-rac{lpha}{2}}\cdotrac{\sigma}{\sqrt{n}}\;;\;ar{x}+z_{1-rac{lpha}{2}}\cdotrac{\sigma}{\sqrt{n}}
ight]$$

Das ist die gleiche Formel wie auf S.2 nur mit \bar{x} statt $\mu.$

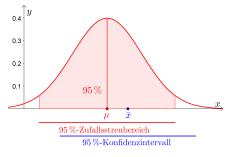
Dabei ist $z_{1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der Standardnormalverteilung mit $0<\alpha<1$.

Bei gegebenem α , σ und n haben der Zufallsstreubereich und das Konfidenzintervall die gleiche Breite:

Intervallbreite =
$$\left(\bar{x} + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right) - \left(\bar{x} - z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}\right) = 2 \cdot z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}$$

Zufallsstreubereich – Konfidenzintervall

Der 95 %-Zufallsstreubereich um μ und das 95 %-Konfidenzintervall um \bar{x} sind gleich breit.



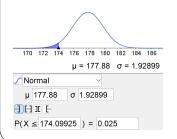
Ob das berechnete Konfidenzintervall den Wert μ enthält, hängt vom Stichprobenmittelwert \bar{x} ab:

- Wenn \bar{x} im Zufallsstreubereich von μ liegt, dann enthält das Konfidenzintervall den Wert μ .
- Wenn \bar{x} nicht im Zufallsstreubereich von μ liegt, dann enthält das Konfidenzintervall den Wert μ nicht.

Der Stichprobenmittelwert \bar{x} liegt mit der Wahrscheinlichkeit 95 % im 95 %-Zufallsstreubereich. Also enthält das 95 %-Konfidenzintervall den Erwartungswert μ mit der Wahrscheinlichkeit 95 %.

$Be rechnung \ ohne \ Formel$

Bei bekannter Standardabweichung berechnen wir das Konfidenzintervall wie den Zufallsstreubereich:

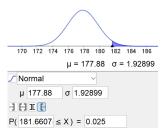


Nur verwenden wir \bar{x} statt μ :

$$\bar{x} = 177,88 \,\mathrm{cm}$$
 $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} = 1,928... \,\mathrm{cm}$

95 %-Konfidenzintervall für μ :

 $[174,09...\,\mathrm{cm};181,66...\,\mathrm{cm}]$



Zweiseitiges Konfidenzintervall für μ bei unbekanntem σ

Die Körpergröße von 42-jährigen Frauen ist normalverteilt mit unbekanntem Erwartungswert μ und unbekannter Standardabweichung σ . Wir sollen den Erwartungswert μ schätzen.

Dazu wählen wir 42-jährige Frauen nach dem Zufallsprinzip aus und messen ihre Körpergrößen (in cm):

169,9	172,0	172,1	171,1	165,8	165,9	153,1	171,5	168,6	167,2

Berechne das zweiseitige 95 %-Konfidenzintervall für den Erwartungswert μ .

Unter diesen Voraussetzungen müssen wir sowohl μ als auch σ aus der Stichprobe schätzen.

Erwartungstreue Schätzer

Gegeben ist eine Stichprobe mit n Werten $x_1, x_2, ..., x_n$.

Die bestmögliche Schätzung für μ ist das arithmetische Mittel \bar{x} der Stichprobe:

Die bestmögliche Schätzung für σ ist die Stichproben-Standardabweichung s_{n-1} :

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$s_{n-1} = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Zweiseitiges Konfidenzintervall für μ bei unbekanntem σ

Die Zufallsvariable X ist normalverteilt mit unbekanntem Erwartungswert μ und unbekannter Standardabweichung $\sigma > 0$.

Eine Stichprobe der Größe n hat den Mittelwert \bar{x} und die Stichproben-Standardabweichung s_{n-1} .

Dann gilt für das zweiseitige $(1 - \alpha)$ -Konfidenzintervall für μ :

$$\left[\bar{x} - t_{f;1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}} \; ; \; \bar{x} + t_{f;1-\frac{\alpha}{2}} \cdot \frac{s_{n-1}}{\sqrt{n}}\right] \; \text{mit} \; f = n-1$$

Dabei ist $t_{f;1-\frac{\alpha}{2}}$ das $(1-\frac{\alpha}{2})$ -Quantil der Student-t-Verteilung mit f Freiheitsgraden mit $0<\alpha<1$.

Bei unbekanntem σ hängt die Breite des Konfidenzintervalls von s_{n-1} und damit (auch bei fester Größe n) von der Stichprobe ab.

1) Liste mit Messwerten in der Tabellen-Ansicht erzeugen Rechtsklick \sim Erzeugen \sim Liste

- 2) Mittel(<Liste von Zahlen>)
 In manchen GeoGebra-Versionen: mean oder Mittelwert
- 3) stdev(<Liste von Rohdaten>) "standard deviation" In manchen GeoGebra-Versionen: StichprobenStandardabweichung
- 4) $(1 \frac{\alpha}{2})$ -Quantil der Student-t-Verteilung mit n-1 Freiheitsgraden ermitteln

95 %-Konfidenzintervall für μ :

$$\left[\bar{x} - t_{9;0,975} \cdot \frac{s_{n-1}}{\sqrt{n}} \; ; \; \bar{x} + t_{9;0,975} \cdot \frac{s_{n-1}}{\sqrt{n}}\right] = [163,6...\,\text{cm}; 171,7...\,\text{cm}]$$

Berechnung mit Formel ▶ Algebra ▶ CAS Tabelle 1 m:=Mittel(I1) • I1 = {169.9, 172, 172.1 m := 167.72 Zahl m = 167.72 s = 5.67407 s := 5.67407 172.1 t = 2.26216 t:=2.26216 171.1 165.8 t := 2.26216 165.9 m-t*s/sgrt(10) 153.1 163.66101 8 171.5 m+t*s/sart(10) 9 168.6 10 167.2 $\mu = 0$ $\sigma = 1.13389$ ✓ Student Freiheitsgrade 9

Alternativer Lösungsweg:

- 1) Daten in Tabellen-Ansicht eingeben 2) Daten markieren und Analyse einer Variablen auswählen: $\frac{1}{1}$ \rightarrow Analyse
- 3) Statistik anzeigen: X 4) Dropdown-Menü: T Schätzung eines Mittelwerts 5) Konfidenzniveau 95% eingeben

