

51. Österreichische Mathematik-Olympiade

Fortgeschrittenenkurs "Mathematik macht Freu(n)de"

18.Oktober 2019

F_2019_10_18.docx

1.)	Die Mittelungleichungen für zwei Variablen x, y > 0	
ŕ	$\sqrt{x^2+y^2}$ $x+y$ \sqrt{xy} 2	
	$\sqrt{\frac{x^2+y^2}{2}} \geq \frac{x+y}{2} \geq \sqrt{xy} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}}$	
	QM AM GM HM	
2.)	Quadratisches Arithmetisches Geometrisches Harmonisches Mittel Zeige, dass für alle positiven reellen Zahlen a, b die Ungleichung	
2.)	$\frac{a^2+1}{b} + \frac{b^2+1}{a} \ge 4 \text{ gilt.}$	
2 \	7-i descipiedos Descladors su la 2 h2l de finile	
3.)	Zeige, dass in jedem Parallelogramm a² - b² < e.f gilt. Dabei sind a, b die Seitenlängen und e, f die Diagonallängen.	
4.)	Man berechne für alle natürlichen Zahlen n $S_n = \sum_{k=0}^n \frac{(-1)^{\left\lfloor \frac{3^k}{2} \right\rfloor}}{3^k}$	GW 1980
5.)	Sei a > 0. Dann gilt $a + \frac{4}{a^2} \ge 3$	Equ&Inequ. S 155
6.)	$(\lfloor x \rfloor + \{y\} = z$	LW 2005
	Löse das System in den reellen Zahlen $\begin{cases} \lfloor x \rfloor + \{y\} = z \\ \lfloor y \rfloor + \{z\} = x \\ \lfloor z \rfloor + \{x\} = y \end{cases}$	
	$([z] + \{x\} = y$ $ x arößte ganze 7ahl < x und \{y\} = y - y $	
7.)	$[x] \dots gr\"{o}$ Ste ganze $Zahl \le x$ und $\{y\} = y - [y]$ Löse in den reellen $Zahlen$ $\left \frac{2x+5}{3}\right = \frac{7x-3}{5}$	
	Lose in den reelien Zahlen $\begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$ [x] größte ganze Zahl kleiner oder gleich x	
	[x] groste ganze zam kiemer oder gieren x	
8.)	Sind a, b, c Seitenlängen eines Dreiecks, so kann man aus den drei Größen	
	\sqrt{a} ; \sqrt{b} ; \sqrt{c} ein Dreieck konstruieren.	
9.)	$H = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots + \frac{1}{2}$ (harmonische Reihe)	Problem- Solving
	$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}$ (harmonische Reihe) Lässt man in der harmonischen Reihe alle jene Summanden weg, deren Nenner –	Through Problems
	in üblicher Dezimaldarstellung – die Ziffer 9 enthält, so ist $H_n < 80$.	
	$H'_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{8} + \frac{1}{10} + \dots + \frac{1}{18} + \frac{1}{20} + \dots + \frac{1}{28} + \frac{1}{30} + \dots + \frac{1}{80} + \dots + \frac{1}{88} + \frac{1}{100} + \dots < 80$	
10.)	Bestimme $1^2 + 2^2 + 3^2 + \dots + n^2$	
,		