Zur Verfügung gestellt von: Stefan Haller UE Geometrie und lineare Algebra, SoSe 2019 LV-Nr.: 250163 Fakulat für Mathematik, Universität Wien

Übungen zu Geometrie und Lineare Algebra für das Lehramt

zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163)

13. Übungsblatt für die Woche vom 10. bis 14. Juni 2019

AUFGABE 13.1. Berechne alle Matrizenprodukte der Form XY, sofern sie definiert sind, wobei X und Y zwei der folgenden Matrizen bezeichnen:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & -2 \\ -1 & 0 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 0 \\ 0 & -2 \\ 3 & 0 \\ 0 & -4 \end{pmatrix},$$

$$D = \begin{pmatrix} 2 & 0 & 1 & 4 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 5 \end{pmatrix}, \qquad E = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \qquad F = \begin{pmatrix} 4 & 3 & 2 & 1 \end{pmatrix}.$$

D.h. berechne alle Produkte der Form $A^2, AB, AC, \ldots, BA, B^2, BC, \ldots, FD, FE, F^2$, sofern diese definiert sind.

AUFGABE 13.2. Bestimme die Ränge folgender Matrizen:

$$A = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -3\\-1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 2 & 3\\-7 & -14 & -21 \end{pmatrix}, \qquad D = \begin{pmatrix} 3 & 1 & 7\\2 & 2 & 6\\1 & 3 & 5 \end{pmatrix},$$

$$E = \begin{pmatrix} 2 & 3 & 4 & 2\\3 & 6 & 8 & 4\\2 & 4 & 6 & 3\\1 & 2 & 3 & 2 \end{pmatrix}, \qquad F = \begin{pmatrix} 2 & 1 & 0 & 0\\1 & 2 & 1 & 0\\0 & 1 & 2 & 1\\0 & 0 & 1 & 2 \end{pmatrix}, \qquad G = \begin{pmatrix} 0 & 0 & 0 & 1 & 2 & 3\\0 & 0 & 0 & -2 & -4 & -6\\3 & 8 & 11 & 0 & 0 & 0\\2 & 6 & 8 & 0 & 0 & 0\\1 & 2 & 3 & 0 & 0 & 0 \end{pmatrix}.$$

Welche dieser Matrizen sind invertierbar?

AUFGABE 13.3. Welche der folgenden Systeme sind linear unabhängig, welche bilden ein Erzeugendensystem von \mathbb{R}^n , und welche bilden eine Basis? Gib in jedem Fall die Dimension des von diesen Vektoren aufgespannten Teilraums an sowie eine Basis, die aus einigen der angegebenen Vektoren besteht.

(a)
$$n = 2$$

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 6 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ -4 \end{pmatrix}.$$
(b) $n = 3$

$$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}.$$
(c) $n = 4$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 1 \\ 1 \\ -1 \end{pmatrix}.$$
(d) $n = 5$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 3 \\ 6 \\ 9 \\ 12 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \\ 5 \end{pmatrix}, \quad \begin{pmatrix} 2 \\ 6 \\ 12 \\ 18 \\ 25 \end{pmatrix}.$$
(e) $n = 6$

Aufgabe 13.4. Zeige, dass die Vektoren

$$v_{1} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 2 \end{pmatrix}, \quad v_{2} = \begin{pmatrix} 2 \\ 3 \\ -1 \\ 6 \end{pmatrix}, \quad v_{3} = \begin{pmatrix} 3 \\ 3 \\ -3 \\ 6 \end{pmatrix}, \quad v_{4} = \begin{pmatrix} 4 \\ 4 \\ -2 \\ 8 \end{pmatrix}, \quad v_{5} = \begin{pmatrix} 6 \\ 11 \\ 0 \\ 24 \end{pmatrix}, \quad v_{6} = \begin{pmatrix} 5 \\ 6 \\ -4 \\ 12 \end{pmatrix}$$

ein Erzeugendensystem von \mathbb{R}^4 bilden und gib vier dieser Vektoren v_i an, die eine Basis von \mathbb{R}^4 bilden. Gib auch vier dieser Vektoren an, die keine Basis von \mathbb{R}^4 bilden.

AUFGABE 13.5. Für jedes der folgenden beiden Gleichungssysteme bestimme die Dimension des Lösungsraums und gib eine Basis, ein minimales lineares Gleichungssystem sowie eine Parameterdarstellung des Lösungsraums an.

(a)
$$2x_1 + 2x_2 + 10x_3 + 20x_4 = 0 \\ -3x_1 - x_2 - 9x_3 - 20x_4 = 0 \\ -4x_1 - x_2 - 6x_3 - 20x_4 = 0$$
 (b)
$$5x_1 - 5x_2 - 5x_3 - 5x_4 = 0 \\ 3x_1 - 4x_2 - 5x_3 + 2x_4 - 8x_5 = 0 \\ -7x_1 + 9x_2 + 13x_3 - 5x_4 + 20x_5 = 0$$

AUFGABE 13.6. Für jedes der folgenden beiden Gleichungssysteme bestimme die Dimension des Lösungsraums und gib eine Basis, ein minimales lineares Gleichungssystem sowie eine Parameterdarstellung des Lösungsraums an.

(a)
$$x_1 -x_2 +x_3 +2x_4 +5x_6 = 0$$

$$2x_1 -2x_2 +2x_3 +4x_4 +10x_6 = 0$$

$$2x_1 -2x_2 +2x_3 +3x_4 +x_5 +9x_6 = 0$$

$$x_1 -x_2 +x_3 +5x_4 -3x_5 +8x_6 = 0$$
(b)
$$-2x_1 -14x_2 +12x_3 = 0$$

$$-2x_1 -9x_2 +7x_3 = 0$$

$$3x_1 +24x_2 -21x_3 = 0$$

$$-3x_1 -19x_2 +16x_3 = 0$$

AUFGABE 13.7. (a) Welche Dimension muss der Lösungsraum eines homogenen linearen Gleichungssystems mit 13 Gleichungen in 29 Unbekannten mindestens haben?

(b) Wieviele lineare Gleichungen sind jedenfalls notwendig um einen 17-dimensionalen Teilraum von \mathbb{R}^{23} zu beschreiben?

AUFGABE 13.8. Gib für jedes k=3,4,5,6 ein System von 3 homogenen linearen Gleichungen in sechs Variablen an, dessen Lösungsraum k-dimensional ist. Warum ist dies für $k \le 2$ und $k \ge 7$ nicht möglich?