Blatt 4

Zu Kapitel G Eigenwerte und Diagonalisierbarkeit

In den Aufgaben $\boxed{21}$ - $\boxed{25}$ ist für die angegebenen reellen Matrizen jeweils zu untersuchen, ob sie diagonalisierbar über $\mathbb R$ oder $\mathbb C$ sind und in diesem Fall die genaue Diagonalgestalt bezogen auf eine konkrete geordnete Basis aus Eigenvektoren¹ anzugeben.² Andernfalls geben Sie so viele linear unabhängige Eigenvektoren wie möglich an.

26 Zeigen Sie, dass für einen Eigenwert einer quadratischen Matrix die geometrische Vielfachheit stets kleiner oder höchstens gleich der algebraischen Vielfachheit ist.

[Hinweis: Ergänzen Sie eine Basis des Eigenraumes zu einer des gesamten Vektorraumes und betrachten Sie die entsprechende Matrixdarstellung bzw. das zugehörige charakteristische Polynom.]

27 Von den Matrizen $A, B \in M_3(\mathbb{R})$ seien die charakteristischen Polynome bekannt, nämlich

$$\chi_A(x) = -x^3 + 4x^2 - 4x$$
 und $\chi_B(x) = -x^3 + 6x^2 - 11x + 6$.

Wieso können wir daraus schließen, dass B bijektiv und dim $\ker(A \cdot B) = 1$ ist?

- **28** Sei V ein \mathbb{K} -Vektorraum und $\Phi \in L(V)$ invertierbar. Zeigen Sie:
- (a) 0 ist kein Eigenwert von Φ .
- (b) Für $\lambda \in \mathbb{K} \setminus \{0\}$ gilt: λ ist Eigenwert von $\Phi \Leftrightarrow \frac{1}{\lambda}$ ist Eigenwert von Φ^{-1} .

29 Geben Sie einen alternativen Beweis für die Aussage in [20], indem Sie eine geeignete lineare Abbildung $C^{\infty}(\mathbb{R},\mathbb{R}) \to C^{\infty}(\mathbb{R},\mathbb{R})$ angeben, bezüglich der jede dort mit e_{λ} bezeichnete Funktion als Eigenvektor, jeweils zum Eigenwert λ , auftritt.

Danke!

¹Erinnerung, um Ihnen unnötige Rechenarbeit zu ersparen: Die Wechselmatrix von einer geordneten Eigenvektorbasis zur Standardbasis haben wir in der VO mit Q^{-1} bezeichnet und die Diagonalisierung von A ergab sich dann durch $D = QAQ^{-1}$; aber wir können D bereits angeben (speziell eben die Anordnung der Eigenwerte entlang der Diagonalen), sobald Q^{-1} bekannt ist (speziell die gewählte Reihenfolge der Eigenvektoren) und müssen deren Inverse Q nicht als Fleißaufgabe auch noch berechnen.

²Wie Sie wahrscheinlich aus der UE "Hilfsmittel aus der EDV" wissen, können Sie die Korrektheit Ihrer umfangreichen Berechnungen eventuell mal mit Mathematica überprüfen – da gibt es insbesondere auch den Befehl Eigensystem[]...