Zur Verfügung gestellt von: Bernhard Lamel UE Analysis, SoSe 2016 LV-Nr.: 250004 Fakultät für Mathematik, Universität Wien

ÜBUNGSAUFGABEN ANALYSIS

DIFFERENTIALRECHNUNG I

(1) Seien $p(x), q(x) \in \mathbb{R}[x], q \neq 0$ Polynome. Zeigen Sie, dass die rationale Funktion $R: \{x \in \mathbb{R}: q(x) \neq 0\} =: D \to \mathbb{R}$, welche durch

$$R(x) = \frac{p(x)}{q(x)}$$

definiert ist, in jedem Punkt $x_0 \in D$ unendlich oft differenzierbar ist.

(2) Zeigen Sie die verallgemeinerte Produktregel: Wenn $f: X \to \mathbb{R}$ und $g: X \to \mathbb{R}$ beide k-mal differenzierbar im Punkt x sind, so ist $fg: X \to \mathbb{R}$ im Punkt x_0 auch k-mal differenzierbar, und es gilt

$$(fg)^{(k)}(x_0) = \sum_{j=0}^{k} {k \choose j} f^{(j)}(x_0) g^{(k-j)}(x_0).$$

(3) Berechnen Sie die Ableitung von der Funktion $f: \mathbb{R} \to \mathbb{R}$, welche durch

$$f(x) = (1 - x + 3x^2 - 4x^3)^{125} (5x + 4)^2$$

gegeben ist.

- (4) Geben Sie ein Beispiel einer Funktion, die im Punkt 0 stetig, aber nicht differenzierbar ist. (Vergessen Sie nicht, ihre Antwort ausführlich zu begründen).
- (5) Geben Sie ein Beispiel einer Funktion auf dem Intervall [0, 1], welche nicht als Ableitung einer differenzierbaren Funktion auftreten kann.
- (6) Zeigen sie den verallgemeinerten Mittelwertsatz: Wenn $f, g \in C([a, b]) \cap D((a, b))$ sind, so gibt es ein $\xi \in (a, b)$, für welches

$$(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi)$$

ist. (Hinweis: Adaptieren sie die Hilfsfunktion aus dem Beweis des Mittelwertsatzes für das Problem.)

(7) Zeigen Sie: Wenn $f, g: (x_0 - \varepsilon, x_0 + \varepsilon) \to \mathbb{R}$ differenzierbare Funktionen sind, und $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$ ist, so gilt, dass

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

falls der zweite Grenzwert existiert.

- (8) Sei $r = p/q \in \mathbb{Q}$. Berechnen Sie (detailliert begründet, unter Verwendung des Satzes über inverse Funktionen) die Ableitung der Potenzfunktion $x \mapsto x^r$, welche für $x \in \mathbb{R}_+$ definiert ist.
- (9) Berechnen Sie, unter der Annahme, dass y(x) die Gleichung $xy(x)^2 + y(x) 1 = 0$ erfüllt, die Ableitung y'(x) (ihre Antwort sollte von der Form y'(x) = G(x, y(x)) sein).
- (10) Berechnen Sie die Ableitung der Funktion

$$x \mapsto (x^2 + x^4 - 2)^{\frac{1}{3}}$$
.

(Zu dieser Frage gehört die Bestimmung des Bereiches, wo die gegebene Funktion definiert und differenzierbar ist!)

Date: April 2016.